Red de Desarrollo Social de América Latina y el Caribe
Plataforma virtual para la difusión de conocimiento sobre desarrollo social

Labour automation and challenges in labour inclusion in Latin America: regionally adjusted risk estimates based on machine learning

 

Autor institucional : CEPAL - División de Desarrollo Social
Autor/Autores: Ernesto Espíndola y José Suárez
Fecha de publicación: 2024-03-15
Alcance geográfico: Latinoamericano
Publicado en: Chile
Descargar: Descargar PDF
Resumen: This paper seeks to estimate job automation's probabilities and risks and analyse its potential impacts on labour inclusion in Latin America. To this end, this document implemented a machine learning-based methodology adapted to the specific characteristics of the region using data from PIAAC surveys and household surveys. In this way, the aim is to build a probability vector of job automation adapted to the region. This vector can be reused in any source of information that contains internationally comparable occupational codes, such as household surveys or employment surveys.
   

 

 

© ReDeSoc - Red de Desarrollo Social de América Latina y El Caribe.
redesoc@un.org
CEPAL - Naciones Unidas
Dirección: Avda. Dag Hammarsjold 3477 Vitacura, Santiago, Chile